Sunday 25 June 2017

B) Moving Average Modelle


Autoregressive gleitende durchschnittliche Fehlerprozesse (ARMA-Fehler) und andere Modelle, die Verzögerungen von Fehlerbegriffen beinhalten, können durch Verwendung von FIT-Anweisungen geschätzt und mit SOLVE-Anweisungen simuliert oder prognostiziert werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Resten verwendet. Das AR-Makro kann verwendet werden, um Modelle mit autoregressiven Fehlerprozessen festzulegen. Das MA-Makro kann verwendet werden, um Modelle mit gleitenden durchschnittlichen Fehlerprozessen zu spezifizieren. Autoregressive Fehler Ein Modell mit Autoregressivfehlern erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form und so weiter für höherwertige Prozesse hat. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen erwarteten Wert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist und so weiter für höherwertige Prozesse. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Durchschnittsparameter sind. Beachten Sie, dass RESID. Y automatisch von PROC MODEL definiert wird. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen abzuschneiden. Damit wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und bei fehlenden Fehlern keine fehlenden Werte ausbreiten, und es stellt sicher, dass die zukünftigen Fehler null sind, anstatt während der Simulation oder Prognose zu fehlen. Einzelheiten zu den Lag-Funktionen finden Sie im Abschnitt Lag Logic. Dieses Modell, das mit dem MA-Makro geschrieben wurde, lautet wie folgt: Allgemeines Formular für ARMA-Modelle Das allgemeine ARMA (p, q) - Verfahren hat folgendes Formular Ein ARMA (p, q) - Modell kann wie folgt angegeben werden: wobei AR i und MA j repräsentieren Die autoregressiven und gleitenden Durchschnittsparameter für die verschiedenen Verzögerungen. Sie können alle Namen, die Sie für diese Variablen wollen, und es gibt viele gleichwertige Möglichkeiten, dass die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zwei-variables AR (1) - Verfahren für die Fehler der beiden endogenen Variablen Y1 und Y2 wie folgt spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzungen nicht innerhalb des entsprechenden Bereichs liegen, wachsen ein gleitender Durchschnittsrestbestand exponentiell. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil die Iterationen von vernünftigen Werten entfernt wurden. Bei der Auswahl von Startwerten für ARMA-Parameter sollte die Pflege verwendet werden. Startwerte von 0,001 für ARMA-Parameter funktionieren in der Regel, wenn das Modell die Daten gut passt und das Problem gut konditioniert ist. Beachten Sie, dass ein MA-Modell oft durch ein höheres AR-Modell angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität in gemischten ARMA-Modellen führen, was wiederum eine ernsthafte Konditionierung in den Berechnungen und Instabilitäten der Parameterschätzungen verursachen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen abschätzen, versuchen Sie es in Schritten zu schätzen. Zuerst verwenden Sie eine FIT-Anweisung, um nur die strukturellen Parameter mit den ARMA-Parametern auf Null (oder vernünftige vorherige Schätzungen falls vorhanden) abzuschätzen. Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur mit den strukturellen Parameterwerten aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzungen liegen, können die ARMA-Parameter-Schätzungen nun konvergieren. Schließlich verwenden Sie eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun wahrscheinlich ganz nahe bei ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell konvergieren, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen Die anfänglichen Verzögerungen der Fehlerausdrücke von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die autoregressiven Fehlerstartmethoden, die von SASETS-Prozeduren unterstützt werden, sind die folgenden: bedingte kleinste Quadrate (ARIMA - und MODELL-Prozeduren) bedingungslose kleinste Quadrate (AUTOREG-, ARIMA - und MODELL-Prozeduren) maximale Wahrscheinlichkeit (AUTOREG-, ARIMA - und MODELL-Prozeduren) Yule-Walker (AUTOREG Vorgehensweise) Hildreth-Lu, der die ersten P-Beobachtungen löscht (nur MODEL-Verfahren) Siehe Kapitel 8, Das AUTOREG-Verfahren für eine Erläuterung und Diskussion der Vorzüge verschiedener AR (p) Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können von PROC MODEL durchgeführt werden. Bei AR (1) Fehlern können diese Initialisierungen wie in Tabelle 18.2 gezeigt hergestellt werden. Diese Methoden sind in großen Proben äquivalent. Tabelle 18.2 Initialisierungen von PROC MODEL: AR (1) FEHLER Die anfänglichen Verzögerungen der Fehlerterme von MA (q) Modellen können auch auf unterschiedliche Weise modelliert werden. Die folgenden gleitenden durchschnittlichen Fehler-Start-up-Paradigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: bedingungslose kleinste Quadrate bedingte kleinste Quadrate Die bedingte Methode der kleinsten Quadrate, um gleitende durchschnittliche Fehlerbegriffe zu schätzen, ist nicht optimal, da sie das Start-Problem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie selbständig bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einem Unterschied zwischen diesen Residuen und den verallgemeinerten kleinsten Quadraten-Resten für die gleitende Durchschnittskovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz bestehen bleibt. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht umwandelbare gleitende Mittelprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie genügend Daten haben, und die gleitenden durchschnittlichen Parameterschätzungen sollten innerhalb des invertierbaren Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte kleinste Quadrate Schätzungen für die MA (1) Prozess kann durch die Angabe des Modells wie folgt produziert werden: Moving-Average-Fehler können schwer abzuschätzen. Sie sollten eine AR (p) - Animation an den gleitenden Mittelprozess anwenden. Ein gleitender Durchschnittsprozess kann in der Regel durch einen autoregressiven Prozess gut angenähert werden, wenn die Daten nicht geglättet oder differenziert wurden. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SASETS-Software und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der autoregressive Prozess kann auf die strukturellen Gleichungsfehler oder auf die endogene Reihe selbst angewendet werden. Das AR-Makro kann für die folgenden Autoregressionstypen verwendet werden: uneingeschränkte Vektorautoregression eingeschränkte Vektorautoregression Univariate Autoregression Um den Fehlerterm einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie nach der Gleichung die folgende Aussage: Angenommen, Y ist ein Lineare Funktion von X1, X2 und einem AR (2) Fehler. Sie würden dieses Modell wie folgt schreiben: Die Anrufe nach AR müssen nach allen Gleichungen kommen, auf die der Prozess zutrifft. Der vorangehende Makroaufruf, AR (y, 2), erzeugt die in der LIST-Ausgabe in Abbildung 18.58 dargestellten Anweisungen. Abbildung 18.58 LIST Option Ausgang für ein AR (2) - Modell Die PRED-vordefinierten Variablen sind temporäre Programmvariablen, so dass die Verzögerungen der Residuen die korrekten Residuen sind und nicht die durch diese Gleichung neu definierten. Beachten Sie, dass dies den Aussagen entspricht, die explizit im Abschnitt Allgemeine Formular für ARMA-Modelle geschrieben sind. Sie können die autoregressiven Parameter auch bei ausgewählten Lags auf Null setzen. Wenn Sie z. B. autoregressive Parameter bei den Ziffern 1, 12 und 13 wünschen, können Sie die folgenden Aussagen verwenden: Diese Aussagen erzeugen die in Abbildung 18.59 dargestellte Ausgabe. Abbildung 18.59 LIST Option Ausgang für ein AR-Modell mit Lags bei 1, 12 und 13 Das MODEL Procedure Listing von Compiled Program Code Statement als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. Y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. Y PRED. y - y Es gibt Variationen der bedingten Methode der kleinsten Quadrate, je nachdem, ob Beobachtungen zu Beginn der Serie zum Aufwärmen des AR-Prozesses verwendet werden. Standardmäßig verwendet die AR-bedingte Methode der kleinsten Quadrate alle Beobachtungen und nimmt Nullen für die anfänglichen Verzögerungen autoregressiver Begriffe an. Durch die Verwendung der M-Option können Sie anfordern, dass AR die unbedingte Methode der kleinsten Quadrate (ULS) oder Maximum-Likelihood (ML) verwendet. Zum Beispiel finden die Diskussionen dieser Methoden im Abschnitt AR Anfangsbedingungen. Mit der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der ursprünglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Zum Beispiel: Mit dem AR-Makro können Sie mit der Option TYPEV ein autoregressives Modell an die endogene Variable anstelle des Fehlerbegriffs anwenden. Wenn Sie zum Beispiel die fünf vergangenen Verzögerungen von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie mit AR die Parameter und Verzögerungen verwenden, indem Sie die folgenden Anweisungen verwenden: Die vorherigen Anweisungen erzeugen die in Abbildung 18.60 dargestellte Ausgabe. Abbildung 18.60 LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unbeschränkte Vektor-Autoregression Um die Fehlerterme eines Satzes von Gleichungen als autoregressiver Autorektor zu modellieren, verwenden Sie nach den Gleichungen die folgende Form des AR-Makros: Der Prozeßname-Wert ist ein beliebiger Name, den Sie für AR verwenden, um Namen für den autoregressiven zu verwenden Parameter. Sie können das AR-Makro verwenden, um mehrere verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen zu modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie einen kurzen Prozessnamenwert für den Prozess, wenn Parameterschätzungen in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber dies ist durch die Länge des Prozessnamens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenwert ist die Liste der endogenen Variablen für die Gleichungen. Angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess zweiter Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und einen ähnlichen Code für Y2 und Y3 generieren: Für die Vektorprozesse kann nur die Methode der bedingten kleinsten Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Lags 0 ist. Zum Beispiel geben die folgenden Aussagen einen Vektorprozess dritter Ordnung an die Gleichungsfehler mit allen Koeffizienten bei Verzögerung 2, die auf 0 beschränkt ist, und mit den Koeffizienten bei Verzögerungen 1 und 3 uneingeschränkt: Sie können die drei Serien Y1Y3 als Vektor autoregressiven Prozess modellieren In den Variablen statt in den Fehlern mit der Option TYPEV. Wenn du Y1Y3 als Funktion von vergangenen Werten von Y1Y3 und einigen exogenen Variablen oder Konstanten modellieren möchtest, kannst du mit AR die Aussagen für die Verzögerungsbedingungen erzeugen. Schreiben Sie für jede Variable eine Gleichung für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abschnittsparameter sein. Wenn es keine exogenen Komponenten für das Vektor-Autoregression-Modell gibt, einschließlich keine Abschnitte, dann ordnen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen geben, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als lineare Funktion nur seines Wertes in den vorherigen zwei Perioden und einen weißen Rauschfehlervektor. Das Modell hat 18 (3 3 3 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Wenn keine Beschränkungen für einen Vektor-AR-Prozess erforderlich sind, gibt die Syntax des AR-Makros das allgemeine Formular ein Präfix für AR, das beim Erstellen von Namen von Variablen verwendet wird, die benötigt werden, um den AR-Prozess zu definieren. Wenn der Endolist nicht angegeben ist, wird die endogene Liste standardmäßig benannt. Die der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name Wert darf 32 Zeichen nicht überschreiten. Ist die Reihenfolge des AR-Prozesses. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben ist, wird ein uneingeschränkter Vektorprozess mit den strukturellen Resten aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, wird endolist standardmäßig benannt. Gibt die Liste der Verzögerungen an, an denen die AR-Begriffe hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgeführt sind, werden auf 0 gesetzt. Alle aufgeführten Lags müssen kleiner oder gleich nlag sein. Und es muss keine Duplikate geben. Wenn nicht angegeben, wird die Laglist standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Legt die zu implementierende Schätzmethode fest. Gültige Werte von M sind CLS (bedingte kleinste Quadrate Schätzungen), ULS (unbedingte kleinste Quadrate Schätzungen) und ML (Maximum Likelihood Schätzungen). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung angegeben ist. Die ULS - und ML-Methoden werden für AR-Modelle von AR nicht unterstützt. Dass der AR-Prozess auf die endogenen Variablen selbst anstatt auf die strukturellen Residuen der Gleichungen angewendet werden soll. Eingeschränkte Vektor-Autoregression Sie können steuern, welche Parameter in den Prozess aufgenommen werden, und beschränken auf 0 die Parameter, die Sie nicht enthalten. Zuerst verwenden Sie AR mit der Option DEFER, um die Variablenliste zu deklarieren und die Dimension des Prozesses zu definieren. Verwenden Sie dann zusätzliche AR-Aufrufe, um Begriffe für ausgewählte Gleichungen mit ausgewählten Variablen an ausgewählten Lags zu erzeugen. Zum Beispiel sind die erzeugten Fehlergleichungen wie folgt: Dieses Modell besagt, dass die Fehler für Y1 von den Fehlern von Y1 und Y2 (aber nicht Y3) an beiden Verzögerungen 1 und 2 abhängen und dass die Fehler für Y2 und Y3 davon abhängen Die vorherigen Fehler für alle drei Variablen, aber nur bei Verzögerung 1. AR-Makro-Syntax für eingeschränkte Vektor-AR Eine alternative Verwendung von AR erlaubt es, Einschränkungen für einen Vektor-AR-Prozess aufzuerlegen, indem man AR mehrmals aufruft, um verschiedene AR-Terme und Verzögerungen für verschiedene anzugeben Gleichungen. Der erste Aufruf hat das allgemeine Formular spezifiziert ein Präfix für AR, das beim Erstellen von Namen von Variablen verwendet wird, die benötigt werden, um den Vektor-AR-Prozess zu definieren. Gibt die Reihenfolge des AR-Prozesses an. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Gibt an, dass AR nicht den AR-Prozess generieren soll, sondern auf weitere Informationen warten muss, die in späteren AR-Aufrufen für denselben Namenswert angegeben sind. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Gibt die Liste der Gleichungen an, auf die die Spezifikationen dieses AR-Aufrufs angewendet werden sollen. Nur Namen, die im endolistischen Wert des ersten Aufrufs für den Namen Wert angegeben sind, können in der Liste der Gleichungen in der eqlist erscheinen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in den Gleichungen in eqlist aufgenommen werden sollen. Nur Namen im Endolisten des ersten Aufrufs für den Namenswert können in varlist erscheinen. Wenn nicht angegeben, varlist standardmäßig endolist. Gibt die Liste der Verzögerungen an, an denen die AR-Begriffe hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgeführt sind, werden auf 0 gesetzt. Alle aufgeführten Lags müssen kleiner oder gleich dem Wert von nlag sein. Und es muss keine Duplikate geben. Wenn nicht angegeben, wird die Laglist standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Das MA-Makro Das SAS-Makro MA generiert Programmierungsanweisungen für PROC MODEL für gleitende Durchschnittsmodelle. Das MA-Makro ist Teil der SASETS-Software und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der gleitende durchschnittliche Fehlerprozess kann auf die strukturellen Gleichungsfehler angewendet werden. Die Syntax des MA-Makros ist das gleiche wie das AR-Makro, außer es gibt kein TYPE-Argument. Wenn Sie die MA - und AR-Makros kombinieren, muss das MA-Makro dem AR-Makro folgen. Die folgenden SASIML-Anweisungen erzeugen einen ARMA (1, (1 3)) Fehlerprozess und speichern ihn im Datensatz MADAT2. Die folgenden PROC MODEL-Anweisungen werden verwendet, um die Parameter dieses Modells mit Hilfe der Maximum-Likelihood-Fehlerstruktur zu schätzen: Die Schätzungen der Parameter, die durch diesen Lauf erzeugt werden, sind in Abbildung 18.61 dargestellt. Abbildung 18.61 Schätzungen aus einem ARMA (1, (1 3)) Prozess Es gibt zwei Fälle der Syntax für das MA-Makro. Wenn Einschränkungen für einen Vektor-MA-Prozess nicht benötigt werden, gibt die Syntax des MA-Makros das allgemeine Formular ein Präfix für MA an, das beim Erstellen von Namen von Variablen verwendet wird, die benötigt werden, um den MA-Prozess zu definieren und ist der Standard-Endolist. Ist die Reihenfolge des MA-Prozesses. Gibt die Gleichungen an, auf die der MA-Prozess angewendet werden soll. Wenn mehr als ein Name angegeben ist, wird die CLS-Schätzung für den Vektorprozess verwendet. Gibt die Verzögerungen an, bei denen die MA-Bedingungen hinzugefügt werden sollen. Alle aufgeführten Lags müssen kleiner oder gleich nlag sein. Und es muss keine Duplikate geben. Wenn nicht angegeben, wird die Laglist standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Legt die zu implementierende Schätzmethode fest. Gültige Werte von M sind CLS (bedingte kleinste Quadrate Schätzungen), ULS (unbedingte kleinste Quadrate Schätzungen) und ML (Maximum Likelihood Schätzungen). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn im Endolisten mehr als eine Gleichung angegeben ist. MA Makro-Syntax für eingeschränkte Vektor-Moving-Average Eine alternative Verwendung von MA erlaubt es, Einschränkungen für einen Vektor-MA-Prozess aufzuerlegen, indem man MA mehrmals aufruft, um verschiedene MA-Terme anzugeben und für verschiedene Gleichungen zu verzögern. Der erste Aufruf hat das allgemeine Formular spezifiziert ein Präfix für MA, das beim Erstellen von Namen von Variablen verwendet wird, die benötigt werden, um den Vektor-MA-Prozess zu definieren. Gibt die Reihenfolge des MA-Prozesses an. Gibt die Liste der Gleichungen an, auf die der MA-Prozess angewendet werden soll. Gibt an, dass MA nicht den MA-Prozess generieren soll, sondern auf weitere Informationen warten muss, die in späteren MA-Aufrufen für denselben Namenswert angegeben sind. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Gibt die Liste der Gleichungen an, auf die die Spezifikationen dieses MA-Aufrufs angewendet werden sollen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in den Gleichungen in eqlist aufgenommen werden sollen. Spezifiziert die Liste der Verzögerungen, bei denen die MA-Terme hinzugefügt werden sollen. Moving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt in der Bewegung über mittlere Modelle, zufällige Wandermodelle und lineare Trendmodelle, Nicht-Sektionsmuster und Trends können mit einem Umzug extrapoliert werden - Groß - oder Glättungsmodell. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Ansonsten bekannt als ein quotARIMA (0,1,1) Modell ohne constantquot. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1-945 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die jeweilige Quotenquote (prozentuale Wachstumsrate) pro Periode kann als Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . (Zurück zum Seitenanfang) Browns Linear (dh Double) Exponentielle Glättung Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel ok oder zumindest nicht so schlecht ist für 1- Schritt-voraus Prognosen, wenn die Daten relativ laut sind), und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann könnte auch eine Einschätzung eines lokalen Trends erfolgen Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl von Ebene als auch von Trend berechnet. Das einfachste zeitveränderliche Trendmodell ist das lineare, exponentielle Glättungsmodell von Browns, das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine ausgefeiltere Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des linearen exponentiellen Glättungsmodells von Brown8217s, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)2.1 Moving Average Models (MA models) Time series models known as ARIMA models may include autoregressive terms andor moving average terms. In Week 1, we learned an autoregressive term in a time series model for the variable x t is a lagged value of x t . For instance, a lag 1 autoregressive term is x t-1 (multiplied by a coefficient). This lesson defines moving average terms. A moving average term in a time series model is a past error (multiplied by a coefficient). Let (wt overset N(0, sigma2w)), meaning that the w t are identically, independently distributed, each with a normal distribution having mean 0 and the same variance. The 1 st order moving average model, denoted by MA(1) is (xt mu wt theta1w ) The 2 nd order moving average model, denoted by MA(2) is (xt mu wt theta1w theta2w ) The q th order moving average model, denoted by MA(q) is (xt mu wt theta1w theta2w dots thetaqw ) Note . Many textbooks and software programs define the model with negative signs before the terms. This doesnt change the general theoretical properties of the model, although it does flip the algebraic signs of estimated coefficient values and (unsquared) terms in formulas for ACFs and variances. You need to check your software to verify whether negative or positive signs have been used in order to correctly write the estimated model. R uses positive signs in its underlying model, as we do here. Theoretical Properties of a Time Series with an MA(1) Model Note that the only nonzero value in the theoretical ACF is for lag 1 . All other autocorrelations are 0. Thus a sample ACF with a significant autocorrelation only at lag 1 is an indicator of a possible MA(1) model. For interested students, proofs of these properties are an appendix to this handout. Example 1 Suppose that an MA(1) model is x t 10 w t .7 w t-1 . where (wt overset N(0,1)). Thus the coefficient 1 0.7. The theoretical ACF is given by A plot of this ACF follows. The plot just shown is the theoretical ACF for an MA(1) with 1 0.7. In practice, a sample wont usually provide such a clear pattern. Using R, we simulated n 100 sample values using the model x t 10 w t .7 w t-1 where w t iid N(0,1). For this simulation, a time series plot of the sample data follows. We cant tell much from this plot. The sample ACF for the simulated data follows. We see a spike at lag 1 followed by generally non-significant values for lags past 1. Note that the sample ACF does not match the theoretical pattern of the underlying MA(1), which is that all autocorrelations for lags past 1 will be 0. A different sample would have a slightly different sample ACF shown below, but would likely have the same broad features. Theroretical Properties of a Time Series with an MA(2) Model For the MA(2) model, theoretical properties are the following: Note that the only nonzero values in the theoretical ACF are for lags 1 and 2. Autocorrelations for higher lags are 0. So, a sample ACF with significant autocorrelations at lags 1 and 2, but non-significant autocorrelations for higher lags indicates a possible MA(2) model. iid N(0,1). The coefficients are 1 0.5 and 2 0.3. Because this is an MA(2), the theoretical ACF will have nonzero values only at lags 1 and 2. Values of the two nonzero autocorrelations are A plot of the theoretical ACF follows. As nearly always is the case, sample data wont behave quite so perfectly as theory. We simulated n 150 sample values for the model x t 10 w t .5 w t-1 .3 w t-2 . where w t iid N(0,1). The time series plot of the data follows. As with the time series plot for the MA(1) sample data, you cant tell much from it. The sample ACF for the simulated data follows. The pattern is typical for situations where an MA(2) model may be useful. There are two statistically significant spikes at lags 1 and 2 followed by non-significant values for other lags. Note that due to sampling error, the sample ACF did not match the theoretical pattern exactly. ACF for General MA(q) Models A property of MA(q) models in general is that there are nonzero autocorrelations for the first q lags and autocorrelations 0 for all lags gt q. Non-uniqueness of connection between values of 1 and (rho1) in MA(1) Model. In the MA(1) model, for any value of 1 . the reciprocal 1 1 gives the same value for As an example, use 0.5 for 1 . and then use 1(0.5) 2 for 1 . Youll get (rho1) 0.4 in both instances. To satisfy a theoretical restriction called invertibility . we restrict MA(1) models to have values with absolute value less than 1. In the example just given, 1 0.5 will be an allowable parameter value, whereas 1 10.5 2 will not. Invertibility of MA models An MA model is said to be invertible if it is algebraically equivalent to a converging infinite order AR model. By converging, we mean that the AR coefficients decrease to 0 as we move back in time. Invertibility is a restriction programmed into time series software used to estimate the coefficients of models with MA terms. Its not something that we check for in the data analysis. Additional information about the invertibility restriction for MA(1) models is given in the appendix. Advanced Theory Note . For a MA(q) model with a specified ACF, there is only one invertible model. The necessary condition for invertibility is that the coefficients have values such that the equation 1- 1 y-. - q y q 0 has solutions for y that fall outside the unit circle. R Code for the Examples In Example 1, we plotted the theoretical ACF of the model x t 10 w t . 7w t-1 . and then simulated n 150 values from this model and plotted the sample time series and the sample ACF for the simulated data. The R commands used to plot the theoretical ACF were: acfma1ARMAacf(mac(0.7), lag. max10) 10 lags of ACF for MA(1) with theta1 0.7 lags0:10 creates a variable named lags that ranges from 0 to 10. plot(lags, acfma1,xlimc(1,10), ylabr, typeh, main ACF for MA(1) with theta1 0.7) abline (h0) adds a horizontal axis to the plot The first command determines the ACF and stores it in an object named acfma1 (our choice of name). The plot command (the 3rd command) plots lags versus the ACF values for lags 1 to 10. The ylab parameter labels the y-axis and the main parameter puts a title on the plot. To see the numerical values of the ACF simply use the command acfma1. The simulation and plots were done with the following commands. xcarima. sim(n150, list(mac(0.7))) Simulates n 150 values from MA(1) xxc10 adds 10 to make mean 10. Simulation defaults to mean 0. plot(x, typeb, mainSimulated MA(1) data) acf(x, xlimc(1,10), mainACF for simulated sample data) In Example 2, we plotted the theoretical ACF of the model x t 10 w t .5 w t-1 .3 w t-2 . and then simulated n 150 values from this model and plotted the sample time series and the sample ACF for the simulated data. The R commands used were acfma2ARMAacf(mac(0.5,0.3), lag. max10) acfma2 lags0:10 plot(lags, acfma2,xlimc(1,10), ylabr, typeh, main ACF for MA(2) with theta1 0.5,theta20.3) abline (h0) xcarima. sim(n150, list(mac(0.5, 0.3))) xxc10 plot (x, typeb, main Simulated MA(2) Series) acf(x, xlimc(1,10), mainACF for simulated MA(2) Data) Appendix: Proof of Properties of MA(1) For interested students, here are proofs for theoretical properties of the MA(1) model. Variance: (text (xt) text (mu wt theta1 w ) 0 text (wt) text (theta1w ) sigma2w theta21sigma2w (1theta21)sigma2w) When h 1, the previous expression 1 w 2. For any h 2, the previous expression 0. The reason is that, by definition of independence of the w t . E( w k w j ) 0 for any k j. Further, because the w t have mean 0, E( w j w j ) E( w j 2 ) w 2 . For a time series, Apply this result to get the ACF given above. An invertible MA model is one that can be written as an infinite order AR model that converges so that the AR coefficients converge to 0 as we move infinitely back in time. Well demonstrate invertibility for the MA(1) model. We then substitute relationship (2) for w t-1 in equation (1) (3) (zt wt theta1(z - theta1w ) wt theta1z - theta2w ) At time t-2 . equation (2) becomes We then substitute relationship (4) for w t-2 in equation (3) (zt wt theta1 z - theta21w wt theta1z - theta21(z - theta1w ) wt theta1z - theta12z theta31w ) If we were to continue (infinitely), we would get the infinite order AR model (zt wt theta1 z - theta21z theta31z - theta41z dots ) Note however, that if 1 1, the coefficients multiplying the lags of z will increase (infinitely) in size as we move back in time. To prevent this, we need 1 lt1. This is the condition for an invertible MA(1) model. Infinite Order MA model In week 3, well see that an AR(1) model can be converted to an infinite order MA model: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w ) This summation of past white noise terms is known as the causal representation of an AR(1). In other words, x t is a special type of MA with an infinite number of terms going back in time. This is called an infinite order MA or MA(). A finite order MA is an infinite order AR and any finite order AR is an infinite order MA. Recall in Week 1, we noted that a requirement for a stationary AR(1) is that 1 lt1. Lets calculate the Var( x t ) using the causal representation. This last step uses a basic fact about geometric series that requires (phi1lt1) otherwise the series diverges. Navigation

No comments:

Post a Comment